Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways.

نویسندگان

  • John Cijiang He
  • Mohammad Husain
  • Masaaki Sunamoto
  • Vivette D D'Agati
  • Mary E Klotman
  • Ravi Iyengar
  • Paul E Klotman
چکیده

In collapsing focal segmental glomerulosclerosis (FSGS) of HIV-associated nephropathy (HIVAN), podocytes exhibit a high proliferation rate and loss of differentiation markers. We have found previously that the nef gene of HIV-1 is responsible for these changes. Here, we investigated the signaling pathways induced by Nef and its role in the pathogenesis of HIVAN. Using conditionally immortalized podocytes after differentiation, we found that infection of podocytes with nef increased Src kinase activity and signal transducer and activator of transcription 3 (Stat3) phosphorylation and activated the Ras-c-Raf-MAPK1,2 pathway. A dominant negative mutant of Src abolished the Nef effect, whereas inhibition of MAPK1,2 or dominant negative Stat3 reduced Nef effects partially. Reducing the expression of Nef with small interference RNA reversed the Nef effect. Mutation of Nef in the PxxP or R105R106 motifs diminished Nef signaling and the phenotypic changes in podocytes. Both phospho-MAPK1,2 and phospho-Stat3 staining increased in podocytes of kidneys from HIV-1 transgenic mice compared with their littermates and in podocytes of kidneys from HIVAN patients compared with HIV patients with non-HIVAN kidney diseases or non-HIV patients with idiopathic FSGS, classic FSGS, or minimal-change disease. These data suggest that Nef-induced activation of Stat3 and Ras-MAPK1,2 via Src-dependent pathways is responsible for podocyte proliferation and dedifferentiation, a characteristic finding in collapsing FSGS of HIVAN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Stat3 activity attenuates HIV-induced kidney injury.

HIV-1 Nef induces podocyte proliferation and dedifferentiation by activating the Stat3 and MAPK1,2 pathways. Activation of Stat3 also occurs in human kidneys affected by HIV-associated nephropathy (HIVAN), but its contribution to the development of HIVAN is unknown. Here, we generated HIV-1 transgenic mice (Tg26) with either 75% Stat3 activity (Tg26-SA/+) or 25% Stat3 activity (Tg26-SA/-). The ...

متن کامل

Signaling in regulation of podocyte phenotypes.

The kidney podocyte is a terminally differentiated and highly specialized cell. The function of the glomerular filtration barrier depends on the integrity of the podocyte. Podocyte injury and loss have been observed in human and experimental models of glomerular diseases. Three major podocyte phenotypes have been described in glomerular diseases: effacement, apoptosis, and proliferation. Here, ...

متن کامل

HIV-1 Nef disrupts the podocyte actin cytoskeleton by interacting with diaphanous interacting protein.

The ability of the human immunodeficiency virus, type 1 (HIV-1) protein Nef to induce cytoskeleton changes in infected host cells is a key event in viral replication. In renal podocytes, we found that Nef induced loss of stress fibers and increased lamellipodia, pathological changes leading to proteinuria in HIV-associated nephropathy. These morphological changes were mediated by Nef-induced Ra...

متن کامل

Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis

Activation of signal transducer and activator of transcription (STAT)3 correlates with proliferation of extracapillary glomerular epithelial cells and the extent of renal injury in glomerulonephritis. To delineate the role of STAT3 in glomerular epithelial cell proliferation, we examined the development of nephrotoxic serum-induced glomerulonephritis in mice with and without podocyte-restricted...

متن کامل

Melatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways

Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 114 5  شماره 

صفحات  -

تاریخ انتشار 2004